Radio Design 101 Appendix A (Episode 3 Part2) – Transistors and Amplifiers at RF

Slides downloaded from: <u>https://ecefiles.org/rf-design/</u> Companion video at: <u>https://youtu.be/m9X0mfg_8lQ</u>

This material is provided by ecefiles.org for educational use only.

This is Episode 3, Part 2, but is optional, so it is placed in the Radio Design 101 video series as Appendix A. The material here is not essential for design and construction of our FM radio receiver. Rather, it is provided for those who want more background in the analysis of small signal RF amplifiers, and the operation of transistors used in their design. We review Episode 3 (Part 1), and then show how BJT transistors are created and how they are modeled. The goal is to provide a broader foundation for those interested in different amplifier types (such as common-emitter and cascode), and in the underlying mathematics from which gains, input and output impedances, and operating frequency limitations can be understood.

Radio Design 101 Episode 3 – Part 2 (Optional ©) Transistors & Amplifiers @ RF

Radio Design 101 Series

30.43

Radio Design 101 - Episode 1 - Transceivers and Filters - Part 1 MegawattKS • 17K views • 2 years ago

Radio Design 101 - Episode 1 - Transceivers and Filters - Part 2 MegawattKS • 9.9K views • 2 years ago

Radio Design 101 - Episode 2 - Impedance Matching - Part 1

Radio Design 101 - Episode 2 - Impedance Matching - Part 2

Radio Design 101

MegawattKS

Public \sim

12 videos 29,214 view:

A :

▶ Play all 🔀 Shuffle

A collection of videos abstracted from a university course on radio / RF circuit design.

The goal is a working FM broadcast receiver, but the material is applicable to all wireless hardware from Amateur Radio to commercial RF integrated circuits. While the focus is on circuit design, episodes in this series touch on a large set of topics ranging from basic circuit and system architectures to radio performance measurement and optimization. More information on the videos and the university course from which it came is available at: https://ecefiles.org/

Radio Design 101 - Episode 3 - RF Amplifiers MegawattKS • 13K views • 2 years ago

MegawattKS · 8K views · 2 years ago

Radio Design 101 - RF Oscillators (Episode 4)

Radio Design 101 - RF Mixers and Frequency Conversions - Episode 5, Part 1 MegawattKS • 11K views • 2 years ago

Radio Design 101 Finishing the Receiver (Episode 6)

Receiver Performance - Radio Design 101 Epilogue 1 MegawattKS • 2.4K views • 1 year ago

Radio Design 101

Episode 3

Outline of this Episode

Triode Devices
DC Biasing

AC Gain and I/O Impedances Small Signal Amplifier Configurations

Part 2

ightarrow

Part

Transistors, Data Sheets and Models

High Frequency Model and Limitations

Recall Basic Amplifier Concept

Alternative "Common-Base" Configuration

Core Amplifier Circuit Analysis

Analysis Method

Based on superposition theory and linearized device models

- Solve DC bias to get I_c and g_m
- Solve AC small signal circuit to find gain (and R_i, R_o), and AC voltages, currents
- Add two solutions to get full waveforms, if designed

Practical BJT Biasing (From Part 1)

DC Biasing of Class A BJT Amplifiers

A traditional "4-resistor bias circuit" is shown below.

Bias circuit analysis

Assume the transistor is operating in the active region, and that Beta or h_{FE} is "large". Then, I_B will be approximately zero (relative to the current in R_{b1} , R_{b2}), and we can use the simple voltage divider formula at the base to get,

$$V_B \approx V_{cc} \frac{Rb1}{Rb1 + Rb2}$$

If the transistor is in the active region, the BE junction is forward biased and $V_{BE_{on}} \approx 0.7V$. Hence,

$$V_E \approx V_B - 0.7$$

The emitter current is then,

$$I_E = \frac{V_E}{R_E}$$

and the collector current is,

 $I_C \approx I_E$

Finally, the collector voltage can be found from the IR drop in Rc as,

$$V_C = V_{CC} - I_C R_C$$

Note that these equations are reasonably independent of the transistor gain h_{FE} , provided the current through R_{b1} and R_{b2} is >> I_B. Hence, the bias voltages and currents should not change significantly with changes in h_{FE}

Note also that the bias current and DC voltages will be relatively insensitive to small variations in V_{BE} caused by temperature or manufacturing, provided that V_E is greater than about 0.5 to 1 volt.

 For an RF amplifier with LC across Rc, Vc will be equal to Vcc

AC Small Signal Model Of Voltage Amplifier Core

Simplified equivalent circuit (VCVS type)

Based on Thevenin's theorem

- R_i , R_o , and A_{vo} depend on amplifier device, circuit configuration, and biasing.
- In general, we should use Z_i , Z_o , and complex frequency-dependent gain ...

SS Amplifier Configurations Review (Low Frequency Formulas)

Configuration	Representative Circuit	Approx. Formulas	A _{Vno-lo}	ad R _i	R _o
Common Emitter	,				
C _B	$\begin{array}{c} Vdd \\ \hline \\ R_{b2} \\ \hline \\ C_{c} \\ \hline \\ C_{c} \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ $	$\begin{aligned} A_{\text{Vno-load}} &= \textbf{-} \ g_m \left(R_c \ r_o \right) \\ R_i &= r_\pi \parallel R_{b1} \parallel R_{b2} \\ \text{where} r_\pi &= h_{fe}/g_m \\ R_0 &= R_c \parallel r_o \end{aligned}$	High	Med	Med
Common Base		$\begin{split} A_{\text{Vno-load}} &= +g_{\text{m}}\left(R_{\text{c}} r_{\text{o}}\right) \\ R_{\text{i}} &= 1/g_{\text{m}} \mid\mid R_{\text{E}} \mid\mid r_{\pi} \\ R_{\text{o}} &= R_{\text{c}} \mid\mid r_{\text{o}} \end{split}$	High	Low	Med
Common Collect	or (Emitter follower)				
		$\begin{split} A_{Vno-load} &\approx 1 \\ R_i &= R_{b1} \parallel R_{b2} \parallel r_{\pi} (1 + g_m R_E)^* \\ R_o &= 1/g_m^{**} \end{split}$	Unity	High	Low

Where do these formulas come from ?

Let's find out ...

* Assumes unloaded output ** Assumes low source R

Outline

• DC Biasing

- Small Signal Amplifier Configurations
- Transistors, Data Sheets and Models
- High Frequency Model and Limitations

BJT Transistor Structure and Physics

Ken Shirriff's blog

Computer history, restoring vintage computers, IC reverse engineering, and whatever

Reverse engineering a counterfeit 7805 voltage regulator

https://www.righto.com/2014/09/reverse-engineering-counterfeit-7805.html

BJTs vs MOSFETs Similarities and Differences

Bipolar Junction Transistor

Example BJT Datasheet

			NPN	RF Tra	nsistor (continued)
Electr	ical Characteristics TA=2	5°C unless otherwise noted	_	_	
Symbol	Parameter	Test Conditions	Min	Мах	Units
OFF CHAI	RACTERISTICS				
V _{CEO(sus)}	Collector-Emitter Sustaining Voltage*	I _C = 3.0 mA, I _B = 0	12		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	I _C = 1.0 μA, I _E = 0	20		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E}$ = 10 μ A, $I_{\rm C}$ = 0	2.5		V
I _{CBO}	Collector Cutoff Current	V _{CB} = 15 V, I _E = 0 V _{CB} = 15 V, T _A = 150°C		0.02 1.0	μA μA
ON CHAR h _{FE}	ACTERISTICS DC Current Gain Collector-Emitter Saturation Voltage	$I_{\rm C}$ = 3.0 mA, $V_{\rm CE}$ = 1.0 V	25	250	V
V _{CE} (sat)	Base-Emitter Saturation Voltage	$l_c = 10 \text{ mA}, l_B = 1.0 \text{ mA}$	+	1.0	V
SMALL SI	GNAL CHARACTERISTICS	$I_{\rm C} = 5.0$ mA, $V_{\rm CF} = 6.0$ V.	900	2000	MHz
• •	Sandin Banamatri roddol	f = 100 MHz			
C _{cb}	Collector-Base Capacitance	f = 100 MHz $V_{CB} = 10 \text{ V}, I_E = 0,$ f = 0.1 to 1.0 MHz		1.0	pF
C _{cb}	Collector-Base Capacitance Small-Signal Current Gain		25	1.0 300	pF
C _{cb} h _{fe} rb'C _c	Collector-Base Capacitance Small-Signal Current Gain Collector Base Time Constant		25	1.0 300 14	pF ps

FUNCTIONAL TEST

G _{pe}	Amplifier Power Gain	V _{CE} = 6.0 V, I _C = 5.0 mA, f = 200 MHz	15	dB
Po	Power Output	V_{CB} = 10 V, I_E = 12 mA, f ≥ 500 MHz	20	mW

NOTE: Current gain $\beta \equiv h_{FE}$

IV Curves

NOTE: Circuit model is a Taylor Series expansion of $I_c(V_{BE})$ around bias point $V_{BE_{on}}$, I_{CQ}

BJT Amp Small Signal AC Analysis At "Midband" Frequencies

Rload

Example Values

A_V loaded

NOTE: Voltage amplifier model below can be derived from previous one using Thevenin's Theorem

Outline

- Triode Devices
- DC Biasing

- Small Signal Amplifier Configurations
- Transistors, Data Sheets and Models
- High Frequency Model and Limitations

Small Signal AC Model at RF

- Emitter, Base, and Collector are (semi) conducting regions
- They are separated by insulating "depletion" regions
- This is the basic structure of a capacitor !

Effects on Circuit Operation

- C_{be} and C_{cb} create lowpass filtering
- C_{cb} is magnified by "Miller Effect" 🛞

 $C_{in} = C_{be} + (1 + |A_{Vloaded}|)C_{cb}$ $\approx (13 + 37)pF @ 4.5 mA$ $\Rightarrow Z_i \approx -j32 \Omega @ 100 MHz !$

- Solutions to this problem at RF include:
 - Use CB or Cascode configurations instead of typical CE amp
 - Use LC circuits for resonance and matching for good *power* gain
 - Incorporate parasitic C into matching network design

Finding C_{be} and C_{cb}

-,	Parameter	Test Conditions	Min	Мах	Units
	RACTERISTICS	$l_{1} = 30 \text{ m} \Lambda l_{2} = 0$	12	1	V
CEO(sus)	Collector-Base Breakdown Voltage	$l_{c} = 3.0 \text{ mA}, \text{ IB} = 0$	20		V
(BR)CBO	Emitter-Base Breakdown Voltage	$l_{\rm c} = 1.0 \mu$ A, $l_{\rm c} = 0$	2.5		V
CBO	Collector Cutoff Current	$V_{CB} = 15 \text{ V}, I_E = 0$	2.0	0.02	μ <mark>Α</mark>
		V _{CB} = 15 V, T _A = 150°C		1.0	μA
√ _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 10 mA, I _B = 1.0 mA		0.4	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.4	V
V _{CE(sat)} V _{BE(sat)}	Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	I _C = 10 mA, I _B = 1.0 mA I _C = 10 mA, I _B = 1.0 mA		0.4	V V
V _{CE(sat)} V _{BE(sat)}	Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	$I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 1.0 mA $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 1.0 mA		0.4 1.0	V V
V _{CE(sat)} V _{BE(sat)} SMALL S	Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{c} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{c} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{c} = 5.0 \text{ mA}, V_{CE} = 6.0 \text{ V},$ f = 100 MHz	900	0.4 1.0 2000	V V MHz
V _{CE(sat)} V _{BE(sat)} SMALL S T C _{cb}	Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance	$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 5.0 \text{ mA}, V_{CE} = 6.0 \text{ V},$ $f = 100 \text{ MHz}$ $V_{CB} = 10 \text{ V}, I_{E} = 0,$ $f = 0.1 \text{ to } 1.0 \text{ MHz}$	900	0.4 1.0 2000 1.0	V V MHz pF
/ _{CE(sat)} / _{BE(sat)} SMALL S T Ccb	Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Small-Signal Current Gain	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ \end{split}$ $\begin{split} I_{C} &= 5.0 \text{ mA}, V_{CE} = 6.0 \text{ V}, \\ f &= 100 \text{ MHz} \\ \hline V_{CB} &= 10 \text{ V}, I_{E} = 0, \\ f &= 0.1 \text{ to } 1.0 \text{ MHz} \\ \hline I_{C} &= 2.0 \text{ mA}, V_{CE} = 6.0 \text{ V}, \\ f &= 1.0 \text{ kHz} \end{split}$	900	0.4 1.0 2000 1.0 300	V V MHz pF
V _{CE(sat)} V _{BE(sat)} SMALL S T Ccb Vfe b'Cc	Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Small-Signal Current Gain Collector Base Time Constant	$\begin{split} I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ \end{split} \\ I_{C} &= 5.0 \text{ mA}, V_{CE} = 6.0 \text{ V}, \\ f &= 100 \text{ MHz} \\ \end{split} \\ V_{CB} &= 10 \text{ V}, I_{E} = 0, \\ f &= 0.1 \text{ to } 1.0 \text{ MHz} \\ \cr I_{C} &= 2.0 \text{ mA}, V_{CE} = 6.0 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \cr I_{C} &= 2.0 \text{ mA}, V_{CB} = 6.0 \text{ V}, \\ f &= 31.9 \text{ MHz} \end{split}$	900 25 3.0	0.4 1.0 2000 1.0 300 14	V V MHz pF

Finding C_{be}

2N5179

 $g_m = \frac{I_c}{nV_T} \qquad C_{be} \approx \frac{1}{2\pi \frac{1}{g_m} f_T} - C_{cb} \qquad r_\pi = \frac{1}{g_m} h_{fe}$

Cascode Amplifier Solution (Details coming in Part 3 ?)

For More Information

Radio Design 101

MegawattKS

Public \vee

12 videos 29,214 views Updated today

Play all

A collection of videos abstracted from a university course on radio / RF circuit desian.

The goal is a working FM broadcast receiver, but the material is applicable to all wireless hardware from Amateur Radio to commercial RF integrated circuits. While the focus is on circuit design. episodes in this series touch on a large

Radio Design 101 - Episode 1 - Transceivers and Filters -

MegawattKS • 17K views • 2 years ago

Radio Design 101 - Episode 1 - Transceivers and Filters -MegawattKS • 9.9K views • 2 years ago

Radio Design 101 - Episode 2 - Impedance Matching - Par MegawattKS • 8K views • 2 years ago

Radio Design 101 - Episode 2 - Impedance Matching - Pai

Radio Design 101

Radio Design 101

=

118

☆ Shuffle

MegawattKS • 5K views • 2 years ago

Radio Design 101 - RF Oscillators (Episode 4) MegawattKS • 16K views • 2 years ago

Radio Design 101 - RF Mixers and Frequency Conversions

Radio Design 101 Episode 3

For More Information

https://ecefiles.org/rf-circuits-course-notes/

RF Circuits Course Notes

Designing and Building Transmitters and Receivers in a Single Semester

This page was created to document <u>a senior design course</u> taught by the author for 20 years at Kansas State University. It is related to the <u>"Radio Design 101" series of videos on YouTube</u>, but goes into more depth (at the expense of being less polished in presentation)

Lectures and Class Handouts

Each link below leads to lecture notes (hand written and a bit rough) plus course handouts (typed and much nicer) on the associated topic.

- Syllabus, Parts List, and Typical Assignments
- Prototyping Boards
- <u>Course Introduction</u>
- Electronic Amplifier Desi
- Transistors at RF
- <u>Resonant Circuits</u>
- <u>Component Parasitics</u>
- Impedance Matching and Power Gain
- Transmission Lines and Smith Charts
- Two Port Linear Circuit Modeling and S-Parameters
- <u>RF Test Equipment</u>
- Oscillators, Varactors, and VCOs plus Crystals and TCXOs
- Transmitters, Antennas, FCC Rules, and Midterm Exam
- Mixers and Frequency Downconversion
- Toroids, Transformers, and Cores
- Filters
- IF Amp, Demod, and Audio Amp
- <u>Final Receiver Assembly</u>
- Student Notes and Circuit/Measurement Pics

RF Circuits Course Section 3

Transistors at RF

Thanks For Watching !

