Antenna Briefs #7 -- Radio Wave Reflections (and Absorption, ...)

Slides downloaded from: <u>https://ecefiles.org/rf-design/</u>

Companion videos at: <u>https://www.youtube.com/watch?v=gKNsVSUiS91</u> (Part 1) and <u>https://www.youtube.com/watch?v=-SpPvIauMBo</u> (Part 2)

This material is provided by ecefiles.org for educational use only.

This episode covers reflection of radio waves and how this phenomenon is important in propagation and in the design and construction of directional antennas. Part 1 overviews both, as well as introducing related effects including refraction, diffraction, absorption, and scattering. The main focus is at frequencies of VHF and above, including cellular, but a brief mention of HF propagation is also made. The second part provides an overview of how EM fields are reflected (and/or absorbed) by materials including metal and wood, and shows real-world measurements of reflection and absorption (attenuation) for typical materials found in residential and commercial buildings.

Drywall is Reasonably Transparent

Antenna Briefs #7 – Part 1

Radio Wave Reflections

(and Diffraction, Absorption, ...)

CEFILES.ORG

¥

Recall Previous Episodes

Antenna Briefs #2 Image: Constraint of the second s

$$\mathbf{P}_{density} = rac{P_t G_t}{4\pi d^2} \; Watts/m^2$$
 (2)

 $P_r = P_{density} A_{eff}$ Watts (3)

Summary and Caveats

- Equation (2) is only true for a "free-space" environment
- Terrestrially, d^2 becomes d^4 or worse unless one or both antennas are well above ground and/or very directional, and we have "line of sight" between them
- So 32 km (20 miles) reduced to 130 m (420 ft.) !

Terrestrial Environments have "stuff" in them !

Which results in Reflections and Scattering, Shadowing, Diffraction, ...

Reflection Effects vary with Frequency (and materials / geometry...)

fλ1 MHz300 m (1000 ft)100 MHz3 m (10 ft)1 GHz0.3 m (12 in)

Episode 7 Topics

Topics

- Applications to Propagation and Antenna Design
 - A little background / theory
 - Demonstrations 🙂

Applications in Propagation Refraction Below about 30 MHz

Reflection, absorption, diffraction At VHF and Above

Other topics:

 Refraction and Tropospheric ducting *

*SEE ALSO: https://rsgb.org/main/get-started-in-amateur-radio/operating-your-new-station/vhfuhf-propagation/

Indoor / Outdoor Propagation Studies at VHF/UHF

Fresnel Zones

Other topics: • Knife-edge diffraction

Real World Antenna Siting

Applications of Reflection Theory in Antenna Design

https://www.harveynorman.com.au/one-for-allvhf-uhf-outdoor-antenna.html

https://blog.alliedmarketresearch.com/radar-systems-haverevolutionized-the-highly-sensitive-detection-technology-678

https://en.wikipedia.org/wiki/Reflective_array_antenna

More Applications in Antennas

Teardown of Kathrein 1800/900 MHz Antenna For Mobile Phone Base Station 6 287 \bigcirc DISLIKE \Rightarrow SHARE \pm DOWNLOAD \bigcirc THANKS % CLIP \equiv + SAV

More Applications in Antennas

https://commons.wikimedia.org/wiki/File:Parabolic_antennas_on_a_telecommunications_tower_on_Willans_Hill.jpg

Applications in Automotive Radar

Demo-day in Microwaves and Antennas course 😊

Fig. 1: FMCW automotive radar – Principle and building blocks.

An example of this radar signal is shown in figure 2 and figure 3. The returned signal is similar in shape to the transmitted one, but shifted in time as the two-way trip from the radar to the target takes an amount of time Δt that is proportional to the distance to the target R:

$$\Delta t = \frac{2R}{c}$$

With c being the light velocity.

Fig. 2: Sawtooth FMCW radar signal: frequency vs. time.

https://semiengineering.com/radar-forautomotive-basics-of-fmcw-radar/

Controlling Reflections in the Lab with Anechoic Materials

Antenna Briefs #7 – Part 2

Reflection of Radio Waves

(and Diffraction, Absorption, ...)

Episode 7, Part 2 Topics

Topics

- Applications to Propagation and Antenna Design
- A little background / theory
 - Demonstrations 🙂

Undergrad EM Textbook View

Dielectric (e.g. wood, drywall) Conductor (e.g. metal)

$$E_{1}^{+} \qquad E_{2}^{+} \approx 0$$

$$E_{1}^{-} = E_{1}^{+}$$

$$\sigma_{2} \approx \infty$$

NOTE: Conductivity may be non-zero (or epison may be complex) for lossy dielectrics, resulting in absorption too... ECEFILES.ORG

How is Wave Reflected from Metal? $E_{Tangential} \rightarrow 0$ at surface of metal (else surface currents would be infinity)

RF currents induced in "skin" (surface) of metal, create reflected wave and stop transmission into the metal

What would have been... (Flip vert and then flip horz to get reflected field)

$$E_{1}^{+} \qquad E_{2}^{+} \approx 0$$

$$E_{1}^{-} = E_{1}^{+}$$

$$\sigma_{2} \approx \infty$$

Skin-Depth and Standing Waves

Incident and reflected fields add, total field amplitude doubles, and resulting wave is "standing"

ECEFILES.ORG

 $\sigma_2 \approx \infty$

Episode 7 Topics

Topics

- Applications to Propagation and Antenna Design
- A little background / theory
- Demonstrations ©

Hertz Demonstrations ③

http://www.sparkmuseum.com/BOOK_HERTZ.HTM

💼 3K 🖓 DISLIKE 📣 SHARE 🛓 DOWNLOAD 🐰 CLIP =+ SAVE \cdots

How Heinrich Hertz Discovered Radio to Validate Maxwell's Equations

61,039 views...

Kathy Loves Physics & History

Demo with 915 MHz Dipoles

Metal Exterior Doors Reflect and Block Transmission

Wood Interior Doors have Little Effect

Drywall is Reasonably Transparent

BUT Windows may Not be !

Measuring Transmission through Energy Efficient Windows

Figure 1. Exterior view of building.

From: "Wireless communication problems in energy-efficient building construction"

2016 IEEE International Symposium on Electromagnetic Compatibility

Figure 4. Radiowave transmittance measurement: 40 MHz through 3 GHz horizontal, 5dB/division vertical. Data below about 800 MHz is not valid (see text).

How Can We Use What We've Learned ?

II. ATTENUATION FROM ENERGY EFFICIENT GLASS

An exterior view of the newly completed building is shown in Figure 1.

Figure 1. Exterior view of building.

From: "Wireless communication problems in energy-efficient building construction" 2016 IEEE International Symposium on Electromagnetic Compatibility

How Can We Use What We've Learned ?

https://en.wikipedia.org/wiki/Reflective _array_antenna

https://blog.alliedmarketresearch.com/radar-systemshave-revolutionized-the-highly-sensitive-detectiontechnology-678

Thanks for Watching

How Can We Use What We've Learned ?

