### Antenna Briefs #5 -- Electric Fields, Magnetic Fields, and EM Waves

### Slides downloaded from: <u>https://ecefiles.org/rf-design/</u> Companion video at: <u>https://www.youtube.com/watch?v=6C-IETDAY1s</u>

This material is **provided by ecefiles.org for educational use only**.

Episode 5 focuses on the electric, magnetic, and electromagnetic fields produced by antennas. We also provide some key engineering results here. For example: How does one find the field strength in volts/meter produced by an antenna and how do we map that to the voltage that a receiving antenna produces? How can we build transmitters that obey regulatory rules? A brief preview of the next episode is also provided, where we ask the questions: what is a B field (spoiler: it's really just an E field in another relativistic frame of reference), and how do we calculate and simulate far-field patterns from antennas...







# **Antenna Briefs #5**

# Electric / Magnetic Fields and EM Waves

## **EM Waves in Free Space**

### **Dipole Antennas**



### NanóVNA (Transmitter, receiver, display)

Voltage Source sets up currents in tx antenna

B

Currents Launch E and **B** Fields

Fields induce voltage/current in rx antenna

**ECEFILES.ORG** 

 $V_t( \circ$ 



## **Guided EM Waves in Coax**



NanoVNA Demonstrations - Coax line reflections and Smith charts MegawattKS







### Topics



Electric (E) and magnetic (B) fields EM Waves E-field strength Antenna pattern calculation methods Antenna simulation

# **Electric Field: E**



 $E_0 = 8.854E-12 F/m$ 

Permittivity (of free-space)

# Magnetic Field: B



Close to wire, we get:

$$B = \mu_o \frac{I}{2 \pi R} = \mu_o H$$
Amps/meter

Ampere's law

$$L_0 = 1.257 E - 6 H/m$$

Permeability (of free-space)

# A Good EM Textbook



## Fifth Edition

4.5/5 stars

Out of print 🛞



### Topics

Electric (E) and magnetic (B) fields



- E-field strength
- Antenna pattern calculation methods
- Antenna simulation

# **Electro-magnetic Fields**





From: http://cleanenergywiki.org/index.php?title=File:Emwavepropagation.jpg

### **NOTE: Illustrations are Snapshots in Time**

EM Fields are sinewaves in space and time, and move to right with velocity c (speed of light)

## **Plane-wave Solutions in Free-Space**



Maxwell's Equations Differential form  $\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$   $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$   $\nabla \cdot \vec{B} = 0$   $\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ 

From: https://owlcation.com/stem/maxwellequations-displacement-current

Far from (and broadside to) antenna, Maxwell's equations simplify to:



### Which has solutions:

$$E_{x} = E_{o} \cos\left(2\pi f\left(t - \frac{z}{c}\right)\right) \text{ and } B_{y} = \frac{1}{c}E_{x}$$
  
With  $c = \sqrt{\frac{1}{\mu_{o} \varepsilon_{o}}} = 2.998E8$  meters/second  
ECEFILES.ORG

From: <u>http://cleanenergywiki.org/index.php?title=File:Emwavepropagation.jpg</u>





### Topics

Electric (E) and magnetic (B) fields EM Waves



Antenna pattern calculation methods Antenna simulation

## **Example 1: Field Strength Rules**

### Find maximum legal transmit power for unlicensed FM transmitters

#### ECFR CONTENT

#### § 15.239 Operation in the band 88-108 MHz.

(a) Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108 MHz.

(b) The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts/meter at 3 meters. The emission limit In this paragraph is based on measurement instrumentation employing an average detector. The provisions in § 15.35 for limiting peak emissions apply.



## **Example 2: E-Field Exposure Limits**



https://www.itu.int/dms\_pub/it u-r/opb/rep/R-REP-SM.2452-2019-PDF-E.pdf

#### FIGURE 1<sup>3</sup>

ICNIRP 1998 electric field-strength for occupational and general public exposure



## **Poynting Vector**



# Finding E and Vr at Receiver



(... in free-space. See Episode 3 for path-loss exponent in terrestrial environments...)



 $V_r = E L_{eff}$ 

 $L_{eff}$  is effective length (or 'height') of antenna

For halfwave dipole,

 $L_{eff} = \frac{2}{\pi} \frac{\lambda}{2}$ 

## **Example: Field Strength Rules**

### For Unlicensed FM transmitters in the US, find maximum legal transmit power:

#### ECFR CONTENT

#### § 15.239 Operation in the band 88-108 MHz.

- (a) Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108 MHz.
- D) The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts/meter at 3 meters. The emission limit



#### Using

$$E = \sqrt{\frac{P_t G_t}{4 \pi d^2}} Z_o$$

We can solve for

$$P_t = \frac{|E|^2}{Z_o} 4 \pi d^2 \frac{1}{G_t}$$

And with E=250uV/m, Zo = 377 Ohms, d=3m, and Gt=1.6 (dipole), we get max legal tx power (with halfwave dipole antenna) is

```
P_t = 11.6 \, nW \, !!
(-49 dBm !)
```

## FM Transmitter Demo in ECE 662 Course

### Antenna and 50 dB attenuator 😇











## Far Field Pattern Calculation in ECE 764







## **Far Field Pattern Calculation**







## **Antenna Simulation (with EZNEC) ...**

#### 🖏 Wires

#### Wire Create Edit Other

🔽 Coord Entry Mode 👘 Preserve Connections 🗖 Show Wire Insulation

|   | Wires |       |        |       |      |       |        |       |      |          |      |  |  |  |  |
|---|-------|-------|--------|-------|------|-------|--------|-------|------|----------|------|--|--|--|--|
|   | No.   |       | End    | 11    |      | End 2 |        |       |      | Diameter | Segs |  |  |  |  |
|   |       | X (m) | Y (m)  | Z (m) | Conn | X (m) | Y (m)  | Z (m) | Conn | (mm)     |      |  |  |  |  |
|   | 1     | 0     | -0.005 | 0     | W2E2 | 0     | 0.005  | 0     | W3E1 | 1        | 1    |  |  |  |  |
|   | 2     | 0     | -0.25  | 0     |      | 0     | -0.005 | 0     | W1E1 | 1        | 2    |  |  |  |  |
|   | 3     | 0     | 0.005  | 0     | W4E1 | 0     | 0.25   | 0     |      | 1        | 2    |  |  |  |  |
| ► | 4     | 0     | 0.005  | 0     | W1E2 | 1.25  | 0.005  | 0     |      | 1        | 15   |  |  |  |  |
| * |       |       |        |       |      |       |        |       |      |          |      |  |  |  |  |



| Segmentation Check                                                         |                   |                      |              | x          |  |  |  |
|----------------------------------------------------------------------------|-------------------|----------------------|--------------|------------|--|--|--|
| File Edit Segmentation                                                     |                   |                      |              |            |  |  |  |
| EZNEC Demover. 6.0                                                         |                   |                      |              |            |  |  |  |
| Dipole in free space                                                       | 10/1/2017         | 10/1/2017 8:35:44 PM |              |            |  |  |  |
| SEGMENTATION CHECK WARNINGS                                                |                   |                      |              |            |  |  |  |
| Source 1: Adjacent seg different len or dia                                |                   |                      |              |            |  |  |  |
| Source 1: Segment connects to mult wires                                   |                   |                      |              |            |  |  |  |
| Wire 2 segment length too long, L = 0.1225 m; conservative max, = .0526 m. |                   |                      |              |            |  |  |  |
| Wire 3 segment length too long, L = 0.1225 m; conservative max, = .0526 m. |                   |                      |              |            |  |  |  |
| Wire 4 segment length too long                                             | . L = .08333 m; c | onse                 | rvative max. | = .0526 m. |  |  |  |

\_



EZNEC Demo

285 MHz

342.0 deg.

3.58 dĐi

0.0 dBmax

EZNEC Demo

# **Future Topics**

## Upcoming episodes

- Far field calculation and simulation
- Reflection of EM Waves in environment
- Antenna types, gain, impedance, and polarization
- Counterpoise, baluns, and chokes
- Phase, superposition, and beamforming...

# Thanks for Watching

# **Today's Final Topic**

A brief look at the physics behind all this...

➤ What "are" E, B and EM fields ?

# **Magnetic Fields Revisited**

Force on a (moving) charge q in presence of B is:

 $F = q (\boldsymbol{v} \times \boldsymbol{B})$ 



 22.2: Force between two current-carrying wires

 Image: I



Figure 22.2.1: Two parallel current-carrying wires will exert an attractive force on each other, if their currents are in the same direction.

https://phys.libretexts.org/Bookshelves/University\_Physics/Book%3A\_Introductory\_Physics\_-\_Building\_Models\_to\_Describe\_Our\_World\_(Martin\_Neary\_Rinaldo\_and\_Woodman)/22%3A\_ Source\_of\_Magnetic\_Field/22.02%3A\_Force\_between\_two\_current-carrying\_wires

# Where Does Force Come From ?

Coulombs Law + Relativity !

B Fields originate from <u>moving</u> <u>charges</u>

And so do E-fields

It's really just Coulombs Law (with relativistic length dilation)



https://phys.libretexts.org/Bookshelves/University\_Physics/Book%3A\_Introductory\_Physics\_-\_Building\_Models\_to\_Describe\_Our\_World\_(Martin\_Neary\_Rinaldo\_and\_Woodman)/22%3A\_ Source\_of\_Magnetic\_Field/22.02%3A\_Force\_between\_two\_current-carrying\_wires



## **And...** An AC current (*accelerating charges*) creates a time/spacevarying *EM field*, which propagates at velocity c through empty space ...

ECEFILES.ORG



#### From: http://cleanenergywiki.org/index.php?title=File:Emwavepropagation.jpg



$$\frac{\Delta E_{x}}{\Delta z} = -\frac{\Delta B_{y}}{\Delta t}$$
$$-\frac{\Delta B_{y}}{\Delta z} = \mu_{o}\varepsilon_{o}\frac{\Delta E_{x}}{\Delta t}$$

$$E_x = E_o \cos\left(2\pi f\left(t-\frac{z}{c}\right)\right)$$
 and  $B_y = \frac{1}{c}E_x$ 

With  $c = \sqrt{\frac{1}{\mu_0 \epsilon_0}} = 2.998E8$  meters/second

# **Other Explanations/views ...**

From **Joules-Bernoulli** equation discussion in: https://en.wikipedia.org/wiki/Classical\_electromagnetism \_and\_special\_relativity





https://www.youtube.com/watch?v=FWCN\_uI5ygY

# Thanks for Watching

# ...all the way to the end $\odot$

## But What "is" a Magnetic Field ?

## Why ??

### B field "curls" around a current



Force on a (moving) charge q in presence of B is:

 $\boldsymbol{F} = q (\boldsymbol{\boldsymbol{\nu}} \mathbf{x} \boldsymbol{B})$ 

Coulombs Law + Relativity !

B Fields originate from <u>moving</u> <u>charges</u>

And so do E-fields

It's really just Coulombs Law (with relativistic length dilation) From **Joules-Bernoulli** equation discussion in: https://en.wikipedia.org/wiki/Classical\_electromagnetism \_and\_special\_relativity

