Radio Design 101 Episode 3 -- RF Amplifiers

Slides downloaded from: <u>https://ecefiles.org/rf-design/</u> Companion video at: <u>https://www.youtube.com/watch?v=UUIqW-vSq9M</u>

This material is **provided by ecefiles.org for educational use only**.

This episode presents a relatively complete discussion of amplifier circuits, including the electronic devices used (tubes/valves, transistors (JFET, BJT, MOSFETs)). It discusses how they're biased, and how the AC behavior is analyzed and understood in terms of gain and input/output impedances. In keeping with previous videos in this series, the focus is on radio-frequency (RF) amps, but much of the theory applies to audio amplifiers as well. A few full-circuit schematics of radios are shown for motivation, and to illustrate variations found in real-world designs.

Radio Design 101 Episode 3

RF Amplifiers

SB-102 HF SSB Transceiver

SX-535 VHF FM Receiver

Single-Chip UHF QPSK Transceiver

Fig. 39. Die photo of fully integrated single-chip 100-mW transceiver.

Vol. 95, No. 10, October 2007 | PROCEEDINGS OF THE IEEE 2041

Fig. 23. Schematic diagram of LNA with integrated T/R switch circuits.

2034 PROCEEDINGS OF THE IEEE | Vol. 95, No. 10, October 2007

Topic Outline

- Triode Devices
- DC Biasing
- AC Gain and I/O Impedances
- Amplifier Configurations
- High Frequency Limitations
- Data Sheets and Example Circuits

Triode Devices

Vaccuum Tube (or Valve)

Junction Field Effect Transistor

Triode Devices

Basic Amplifier Concept

 $A_v = -g_m R$

"Transconductance"

Tube-based RF Amplifier

 $A_v = -g_m R$ (a) f_{o}

Transconductance Values

ISSIPATION

WATT

1

TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS	A1 AMPLIFIER - E	ACH TRIODE UNIT	
HEATER VOLTAGE	12.6 6.	.3 12.6	6.3 VOLTS
HEATER CURRENT	150 30	00 150	300 ма.
PLATE VOLTAGE	100	250	VOLTS
GRID VOLTAGE	-1	-2	VOLTS
PLATE CURRENT	0.9	1.2	MA.
PLATE RESISTANCE	80 00 0	62 500	OHMS
TRANSCONDUCTANCE	1 250	1 600	µмноs
AMPLIFICATION FACTOR	100	100	
SINILIAR TYPE REFERENCE:	Characteristics so and 128176T.	omewh a t similia r	to types 6SL7GT
COPYRIGHT 1947 BY TUNG-SOL LAMP	NORKS INC. ELECTRON	IC TUBE DIVISION NEW	ARK NEW JERSEY 11 S A

 $A_{\nu} = -g_m R = -(1250 x 10^{-6})(80,000) = -100$

UNIPOTENTIAL CATHODES

DOUBLE TRIODE

MINIATURE TYPE

HEATER PARALLEL 12.6 VOLTS 6.3 VOLTS

SERIES

150 MA.

AC OR DC

FOR 12.6 VOLT OPERATION APPLY HEATER VOLTAGE BETWEEN PINS #4 AND #5. FOR 6.3 VOLT OPERATION APPLY HEATER VOL-TAGE BETWEEN PIN #9 AND PINS #4 AND #5 CONNECTED TOGETHER.

300 MA.

BOTTOM VIEW

SMALL BUTTON

9 PIN BASE

ANY MOUNTING POSITION

THE 12AX7 COMBINES TWO COMPLETELY INDEPENDENT HIGH-MU TRIODES IN THE SMALL 9 PIN BUTTON CONSTRUCTION. IT IS ADAPTABLE TO APPLICATIONS WHERE HIGH VOLTAGE GAIN AND LOW HEATER POWER ARE THE IMPORTANT CONSIDERATION. SUCH AS VOLTAGE AMPLIFIERS, PHASE INVERTERS AND MULTIVIBRATORS. THE CEN-

BJT Transconductance

 g_m varies with bias current

For a BJT device:

Amplifier Design Basics are Device-Independent (but bias circuits and details vary)

Topic Outline

- Triode Devices
- DC Biasing
- AC Gain and I/O Impedances
- Amplifier Configurations
- High Frequency Limitations
- Data Sheets and Example Circuits

Recall Amplifier Concept

Requires multiple batteries Bias current is not stable in this circuit Input source isn't ground referenced

Practical BJT Biasing Circuit

BJT Bias Circuit Analysis

DC Biasing of Class A BJT Amplifiers

A traditional "4-resistor bias circuit" is shown below.

Bias circuit analysis

Assume the transistor is operating in the active region, and that Beta or h_{FE} is "large". Then, I_B will be approximately zero (relative to the current in R_{b1} , R_{b2}), and we can use the simple voltage divider formula at the base to get,

$$V_B \approx V_{cc} \frac{Rb1}{Rb1 + Rb2}$$

If the transistor is in the active region, the BE junction is forward biased and $V_{BE_{on}} \approx 0.7V$. Hence,

$$V_E \approx V_B - 0.7$$

The emitter current is then,

$$I_E = \frac{V_E}{R_E}$$

and the collector current is,

 $I_C \approx I_E$

Finally, the collector voltage can be found from the IR drop in Rc as,

$$V_C = V_{CC} - I_C R_C$$

Note that these equations are reasonably independent of the transistor gain h_{FE} , provided the current through R_{b1} and R_{b2} is >> I_B. Hence, the bias voltages and currents should not change significantly with changes in h_{FE}

Note also that the bias current and DC voltages will be relatively insensitive to small variations in V_{BE} caused by temperature or manufacturing, provided that V_E is greater than about 0.5 to 1 volt.

For an RF amplifier with LC across Rc,
 Vc will be equal to Vcc

BJT Bias Circuit Design

Bias Circuit Design

The following procedure is based on the simplified analysis on the previous page.

- Pick $V_E > 0.5$ V to swamp V_{BE} variations due to manufacturing and temperature changes. (But not so high that it significantly degrades the output signal swing you can achieve.)
- Pick R_E to give the desired I_E . (Hence the desired I_C since the two are approximately equal).
- Find V_B from $V_B \approx V_E + 0.7$.
- Find I_{Bmax} from I_C and the *minimum* transistor h_{FE} value in the datasheet.
- Find R_{b1} and R_{b2} to produce the value of V_B above, subject to the constraint that the current in R_{b1} , R_{b2} is much greater than I_{Bmax} . (Typically 5 to 10 times I_{Bmax} is used, but this could be relaxed some since we're already using the worst-case I_B .)

- Fine-tune R_{b1} and R_{b2} if desired to account for the (small) lowering of V_B due to the non-zero base current expected (use the *typical* h_{FE} here to provide good "design-centering").
- Find R_c to produce a desired V_C and to satisfy other design constraints such as the amplifier gain.
- Convert resistors to available values.
- Check to be sure the transistor is operating comfortably in the active region !!

NOTE: For small current circuits, we can stop
 here, but in general you should consider power
 dissipations in the transistor and resistors and be
 sure you don't approach or exceed the limits...

For an RF amplifier with LC across Rc, Vc can reach 2 xVcc, so need to check V_{CE} breakdown spec also

Some Additional Bias Circuits

Class C Power Amplifier

Typical Circuit

Topic Outline

- Triode Devices
- DC Biasing
- AC Gain and I/O Impedances
- Amplifier Configurations
- High Frequency Limitations
- Data Sheets and Example Circuits

Full Circuit Behavior

Circuit Understanding

Core Amp AC Small Signal Model

Simplified <u>equivalent circuit</u> of Core Amp (@ fo)

Based on Thevenin's theorem and linear systems theory

- Ri, Ro, and Avo depend on amplifier device, circuit configuration, and biasing
- In general, we should use Zi, Zo, and complex frequency-dependent gain, but this simplified treatment is sufficient for this particular Radio 101 video...

Using the Model

Concentrating on the Core

Knowing Ri, Avo, and Ro is critical to:

- Interfacing with source and load
- Calculating voltage division factors
- Matching for maximum power gain
- Understanding analog/RF circuits !

Overview of Part 2

- Triode Devices
- DC Biasing
- AC Gain and I/O Impedances
 - Amplifier Configurations

Part 2

- High Frequency Limitations
- Data Sheets and More Example Circuits

Amplifier Configurations Preview

BJT Amplifier Configurations

Amplifier Configurations Preview

 $R_0 = R_c || (r_{o1} + r_{o2}(1 + g_m r_{o1}))$

Example Circuit 1

Example Circuit 2

Example Circuit 3

Fig. 39. Die photo of fully integrated single-chip 100-mW transceiver.

Vol. 95, No. 10, October 2007 | PROCEEDINGS OF THE IEEE 2041

Fig. 23. Schematic diagram of LNA with integrated T/R switch circuits.

2034 PROCEEDINGS OF THE IEEE | Vol. 95, No. 10, October 2007

High-Frequency Behavior

Example Datasheet

	Parameter	Test Conditions	Min	Max	Units
	Collector-Emitter Sustaining Voltage*	$l_{c} = 3.0 \text{ mA}$, $l_{B} = 0$	12		V
(BR)CBO	Collector-Base Breakdown Voltage	$l_{c} = 1.0 \ \mu A$, $l_{E} = 0$	20		V
(BR)EBO	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \mu \text{A}, I_{\rm C} = 0$	2.5		V
CBO	Collector Cutoff Current	$V_{CB} = 15 \text{ V}, I_E = 0$ $V_{CE} = 15 \text{ V}, T_E = 150^{\circ}\text{ C}$		0.02	μΑ
UL(Sal)				Constant of the	
	Collector-Emitter Saturation Voltage	$l_{c} = 10 \text{ mA}$ $l_{R} = 1.0 \text{ mA}$	CC (NON	0.4	V
/ _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 10$ mA, $I_{\rm B} = 1.0$ mA		1.0	V
BE(sat)	Base-Emitter Saturation Voltage	$I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 1.0 mA		1.0	V
BE(sat)	Base-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$	900	1.0	V MHz
BE(sat)	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_c = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_c = 5.0 \text{ mA}, V_{CE} = 6.0 \text{ V},$ f = 100 MHz	900	1.0 2000	MHz
GE(sat) GE(sat) GE(sat) F Cob	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance	$I_{c} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{c} = 5.0 \text{ mA}, V_{cE} = 6.0 \text{ V}, f = 100 \text{ MHz}$ $V_{cB} = 10 \text{ V}, I_{E} = 0, f = 0.1 \text{ to } 1.0 \text{ MHz}$	900	1.0 2000 1.0	MHz pF
MALL SI r Ccb	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Small-Signal Current Gain	$\begin{split} & l_{c} = 10 \text{ mA}, \ & l_{B} = 1.0 \text{ mA} \\ & l_{c} = 5.0 \text{ mA}, \ & V_{CE} = 6.0 \text{ V}, \\ & f = 100 \text{ MHz} \\ & V_{CB} = 10 \text{ V}, \ & l_{E} = 0, \\ & f = 0.1 \text{ to } 1.0 \text{ MHz} \\ & l_{c} = 2.0 \text{ mA}, \ & V_{CE} = 6.0 \text{ V}, \\ & f = 1.0 \text{ kHz} \end{split}$	900	1.0 2000 1.0 300	MHz pF
BE(sat) BE(sat) Cob Cob	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Small-Signal Current Gain Collector Dase Time Constant	$I_{c} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{c} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{c} = 10 \text{ mA}, V_{CE} = 6.0 \text{ V}, f = 100 \text{ MHz}$ $V_{CB} = 10 \text{ V}, I_{E} = 0, f = 0.1 \text{ to } 1.0 \text{ MHz}$ $I_{c} = 2.0 \text{ mA}, V_{CE} = 6.0 \text{ V}, f = 1.0 \text{ kHz}$ $I_{c} = 2.0 \text{ mA}, V_{CE} = 6.0 \text{ V}, f = 31.9 \text{ MHz}$	900 25 3.0	1.0 2000 1.0 300 14	MHz pF ps

Graphs and Formulas

2N5179

1300

G = Zi = 50 Ohms

Thanks For Watching !