DC Biasing of BJT Amplifiers

A traditional "4-resistor bias circuit" is shown below.

Bias circuit analysis

Assume the transistor is operating in the active region, and that Beta or h_{FE} is "large". Then, I_B will be approximately zero (relative to the current in R_{b1} , R_{b2}), and we can use the simple voltage divider formula at the base to get,

$$V_B \approx V_{cc} \frac{Rb1}{Rb1 + Rb2}$$

If the transistor is in the active region, the BE junction is forward biased and $V_{BE_{on}} \approx 0.7V$. Hence,

$$V_E \approx V_B - 0.7$$

The emitter current is then,

 $I_E = \frac{V_E}{R_E}$

and the collector current is,

 $I_C \approx I_E$

Finally, the collector voltage can be found from the IR drop in Rc as,

$$V_C = V_{CC} - I_C R_C$$

Note that these equations are independent of the exact transistor gain h_{FE} , provided the assumption that the current through R_{b1} and R_{b2} is >> I_B is valid. Hence, the bias voltages and currents should not change significantly with changes in h_{FE} if R_{b1} and R_{b2} are selected to satisfy this assumption.

Note also that the bias current and bias voltages will be relatively insensitive to small variations in V_{BE} caused by temperature or manufacturing, provided that V_E is greater than about 0.5 to 1 volt.

Bias Circuit Design

The following procedure is based on the simplified analysis on the previous page.

- Pick $V_E > 0.5$ V to swamp V_{BE} variations due to manufacturing and temperature changes. (But not so high that it significantly degrades the output signal swing you can achieve.)
- Pick R_E to give the desired I_E . (Hence the desired I_C since the two are approximately equal).
- Find V_B from $V_B \approx V_E + 0.7$.
- Find I_{Bmax} from I_C and the *minimum* transistor h_{FE} value in the data sheet.
- Find R_{b1} and R_{b2} to produce the value of V_B above, subject to the constraint that the current in R_{b1} , R_{b2} is much greater than I_{Bmax} . (Typically 5 to 10 times I_{Bmax} is used, but this could be relaxed some since we're already using the worst-case I_B .)
- Fine-tune R_{b1} and R_{b2} if desired to account for the (small) lowering of V_B due to the non-zero base current expected (use the *typical* h_{FE} here to provide good "design-centering").
- Find R_c to produce a desired V_C and to satisfy other design constraints such as the amplifier gain.
- Convert resistors to available values.
- Check to be sure the transistor is operating comfortably in the active region !!

NOTE: For small current circuits, we can stop here, but in general you should consider power dissipations in the transistor and resistors and be sure you don't approach or exceed the limits...